19 August 2020

Fuel Flow Test

 

Prior to the first start I had already cleaned, purged and tested the various aspects of the fuel system from the tanks through the filter and electric fuel pump, up to the fuel divider. I still wanted to run a full fuel flow test though. In fact when I emailed the DAR (not that I was not planning on already doing it) he had mentioned that he would want to see a fuel flow test. 

FAA AC 90-89B has some decent information on fuel flow testing. The RV-10 tanks are a pretty known design as is the engine combination, fuel line routing, boost pump, and filter setup. So really the test here is to make sure that the electric boost pump is wired and working correctly, that the flow through the lines is not restricted, that the lines themselves are free of debris, and that we can get the required flow rate out of our boost pump. Ideally I would have tested the "usable fuel" here as well, but Mackenzie was about done with the fuel test by the time we got through all of the essentials.

We started with the the plane in level flight attitude, and checking the various functions of the fuel selector and then ran the fuel flow test both on the left and the right tank. I purchased a nice fuel funnel from Aircraft Spruce that had both a water separator as well as a filter, so I ended up re-using the fuel for this test. From there we put the plane in the nose up pitch as far as we could (basically until the rear tie down was just off of the ground). 

Tests one and two we ran for 60 seconds for each tank. I will be honest, I did not get overly exact about measuring after we passed 4 qts in under well under 60 seconds. Regardless, the first test was over +67 gallons per hour (with the fuel being taken from the line at the input of the fuel servo). The second test was about +68 gallons per hour. I would say that the flow was probably a little more than that calculation, but my container was only 5 qts and I didn't want to make a mess. I opted not to go the other way around and have Mackenzie stop the timer at the 4 qt marker because I was in fear of the boost pump not coming off in time and there is A LOT of flow on that pump!

In looking through my engine documentation, I didn't see a fuel flow sensor on the max RPM test that was run so I am going to generalize a bit on max fuel flow for 2700 RPM. If we are running at mixture for peak power, the brake specific fuel consumption (BSFC) should be on the order of 0.5 pound/hp per hour, if the engine compression ratio is ~8.7:1. Let's round that up to 0.60 pounds/hour of fuel per each horsepower (even though our 9.0 compression ration should actually keep that number closer to 0.5).  Avgas weighs about 6 pounds/gallon, so we would expect about 10 hp for every one gph of fuel flow.  Take our Thunderbolt IO-540 engine rated at 295hp, we would get 29.5 gallons per hour (loosely). 

The rule of thumb here is that in our low wing electric boost pump enabled system we need about 125% of our max flow to be pushing through our line, so 36.9gph. I realize that I did not bring the line up to the spider, but our 68 gph is more than enough to meet our safety factor.




17 August 2020

First Start!



We started with a short checklist to button up all of the loose things on the plane that would probably depart the aircraft once the prop started spinning. I decided to remove the engine baffling as it was still not fully complete at the time of start. i.e. Make sure all the bolts were in the flaps, ailerons, elevator, trim, etc. From there we went straight into the pre-oil procedure. I started that with draining all of preservative oil out of the system, pre-filling the oil cooler directly, pre-filling the oil filter as much as I could, and then adding 8.5 qts directly into the engine itself (for a total of 9.5 qts). With the bottom plugs out I pulled the prop through a number of cycles. I loosened the oil cooler main line and then with everything clear hit the starter for about 8 seconds. We immediately saw a little seepage at the oil cooler fitting. (Note this point of time) From there we tightened the fitting and cranked over the engine again to start building pressure. Within a 5-10 second engine cycle oil pressure built right away. I stopped cranking and watched how fast the pressure dropped, it fell off pretty slowly. After that I cycled the prop for another 5 seconds to bring the pressure up again to make sure oil was getting through the system and air pockets were being minimized.

With the pre-oil complete, we pulled the plane forward onto the ramp. This was great timing because two EAA 186 guys were just walking by and did a secondary sanity check. With everything looking good and a final FOD check of the ramp, I got in, started the AUX and MAIN bus. Waited for the G3X to come online and then gave the plane a 5 second prime (to stable fuel flow). Cleared prop and it fired almost immediately. 

At that point as the engine was coming alive I got the kill sign from Tim. I pulled the mixture back, turned the key off and pulled it out and got out of the plane. I had an oil leak :( Tim pointed out that the fitting that was going to the oil cooler was leaking. Ugh, that is the one that I opened up to bleed the system. I completely remember hand tightening it, getting distracted and not torquing it. A quick clean-up and a tightening of one fitting and on to try two. 

The second fire was about the same. Maybe one second of prime and the engine came to life almost immediately. It ran a little rough for about 10 seconds and then you could hear the remaining cylinders starting to get fuel. About 15 seconds in, and it absolutely purred! With the previous leak, I didn't want to run through my full 3 minute plan to cycle everything. I opted to shut it down once everything was smooth.

Photos:


Oil system pre-oil (Service Instruction No. 1241C) / checklist:

1. Fill the oil tank or sump to the proper level. In all turbocharged engines use only ashless dispersant oil
conforming to specification MIL-L-22851 or SAEJ1899.

2. External oil tanks and turbocharged engines.
    a. On engines with external oil tanks, disconnect the oil inlet connection at the oil pump and drain a sufficient amount of oil to eliminate any possible obstructions or air in the inlet passage. Reinstall
oil inlet connections to the oil pump.
    b. On turbocharged engines, disconnect the inlet lines at the turbocharger and the front lines to the
exhaust valve guide oiler, if applicable. Also disconnect the engine air duct from the compressor
housing inlet. Fill the turbocharger oil inlet port with clean engine oil and manually turn the
compressor wheel several revolutions in both directions to coat all journal and bearing surfaces
with oil. Reconnect the air duct.

3. For wet sump engines, except TIO-541-E series, fill the cooler with oil.

4. Remove one spark plug from each cylinder of the engine.

5. Place the mixture control in idle cut-off and the fuel selector or shut off in the “off” position. If the
engine is not equipped with idle cut-off, open throttle to full open position and put fuel and ignition
switches in “off” position.

6. Turn engine with starter (or external power source, if available) until oil is visible at the end of the oil
lines disconnected in steps 2 and 3. Reconnect the oil lines. Turn engine with starter (or external
power source, if available) until a minimum pressure of 20 lbs. is indicated on the oil pressure gage.
NOTE
If oil pressure is not attained after cranking 10-15 seconds, allow starter to cool.

7. Energize starter for 2 or more 10-15 seconds periods.
CAUTION
DO NOT ENERGIZE STARTER FOR PERIODS OF OVER 10-15 SECONDS. ALLOW
TO COOL AFTER EACH ENERGIZING.
 Lack of pressure build-up or rapid drop-off of pressure is an indication of the presence of air in the line
and the engine is not being pre-oiled. To remedy this, repeat steps 2 and 3 and continue until oil pressure is indicated.

8. The line disconnected in step 2 may be reconnected after the oil pressure is attained and the oil is
flowing from the disconnected lines.

9. Turn the engine with the starter for approximately 10 seconds to check for continued oil pressure.

10. Reinstall spark plugs and proceed with normal starting procedure which should not be later than three
housing after pre-oiling.

11. When engine is started it should be run for about three minutes at approximately 1000 RPM for fixed
wing applications, and idle RPM on helicopters before increasing power for other ground operations
or take-off power.

Fuel system checklist:

1. Check airframe plumbing for secureness.
    a. Tight connections.
    b. No kinked or chaffing plumbing.
    c. Check electrical wiring and electrical connector for boost pump.
    d. Correct circuit breaker for boost pump.
    e. Fuel system plumbing and wiring are free from interfering with full movement of all control surface controls.

2. Flush airframe fuel system plumbing before connecting high-pressure boost pump.

3. Free flow boost pump to insure pick-up of fuel on initial run of boost pump.

4. Check mounting hardware of fuel control, adapters, and brackets. Check lock nuts for correct engagement and torque. Check all screws requiring lock wire to be lock wired. Check Purge Valve stop screw for lock wire.

5. Check control cables for security to mounting brackets.

6. Check control cable rod ends for secured jam nuts and correct locking hardware on the actuating levers.

7. Check for correct engagement of the teeth on control levers.

8. Check operation of the manual mixture control. No binding. Check position to “Full Rich” and “ICO” with operation of the control in the cockpit.

9. Check operation of the throttle control. No binding. Check position to WOT to idle with operation of the control in the cockpit.

10. Check operation of the purge valve. No binding. Check position to “Full Rich” (run) and “ICO” with operation of the control in the cockpit.

11. Check security and clamping of the injector nozzle lines.

12. Check all hose connections in engine compartment. Fire sleeved hose, hoses tied off to prevent chaffing and away from exhaust system.

13. Injector nozzles installed with restrictors. Nozzle lines torqued at both ends.

14. Check air box installation. Check operation of alternate air valve if installed.

15. Pressure test fuel system. Purge valve in the ICO position

21 May 2020

Door Locks (Part 2)

The door locks are pretty much just a standard 90 degree turn to open cam lock, with a 5 pin wafer lock cylinder that has a square drive threaded interface to the cam bar itself.






The length of the threaded portion of the lock is roughly 5/8".



















The diameter of the threaded portion is designed for a 3/4" hole. 

 

With an overall diameter of the bezel being around 7/8".


The cam interface is a square drive and is retained by a screw. The cylinder itself is retained via the clip shown below.


One of the more distinguishable aspects of this lock is that the 90 degree rotation is constrained by the housing itself in combination with the cylinder. Here you can see the two slots at 0 and 90 degrees. (sorry for the terminology, I am obviously not a locksmith).

Also, if you look at the face of the housing above you will see two dogs at 11 and 1. Those limit the rotation and interface with the cylinder itself. (look at the dog just above the silver cover)

The wafers are a little different. I don't know exactly what they are, but I ordered a couple of different wafer styles so I can re-key the lock. These almost look more like a Toyota style wafer than they do the normal universal wafers for cam locks. I was able to take the wafers out of a CCL cam lock and put them into this cylinder and they worked. Rather than mess too much with it before the my wafer kits arrive, all I did was take all the wafers out of the two new door locks I ordered, and re-arranged three out of the five wafers to match my ignition key (minus 2 wafers). This is good enough for the time being, but I will make a new part three post when my new wafers arrive.


Door Locks (Part 1)

My door lock saga starts with Aircraft Spruce and the initial ordering of my locks. When I was finishing up my doors I ended up ordering both a combo ignition switch with two door locks as well as two additional locks. The theory was that I would key both of the doors with the same key and both the baggage door and ignition switch with another key. Not that these keys stop anything but it is always nice to be able to have the option of giving someone a key that will let them into the plane but not start it.


Roll forward a year, and the plane is for the most part together. Post installation I never really used the locks as the plane is just sitting in the hangar. At this point though I had installed the Aerosport Products Baggage Door. One of the things that is partly nice, and partly really annoying about actually using the door strut is that you have to use the door lock to keep the door shut... (The default resting position of the door with the strut attached is wide open.) After looking around in one of the thousand places I would put the keys, I finally found them. When I went to try them though, they did not turn in the baggage door lock. One of my keys works perfectly fine the the ignition, one works perfectly fine in the doors, but the baggage door just does not turn. It feels like it wants to, but it just doesn't.



Long story short. I call Aircraft Spruce thinking I will order a new key. I thought about that though for a bit, and that may or may not solve the problem. Instead, I ask to PURCHASE a new lock to match my key that I know works in the ignition. That way I am assured that I have a good cylinder and even a spare. Not a big deal. These things are 50 dollars, so it is a little annoying because we are talking about probably a 7 dollar cam lock, but whatever. Now mind you, there are absolutely no markings on these locks. Nothing on the key under the boot, nothing on the lock. These have 0 identification markings.

The issue is that a week later I get a call from Aircraft Spruce that is a drop ship item from the vendor (which I had already discussed with them). Not that big of a deal because it was just a 15 dollar charge on top of the 49 dollar locks. Again, annoying, but in the grand scheme of things not horrible. Until a week later ACS called me again and said that the vendor had to special make this and it was not going to be $150 dollars just for the shipping.  Now we are to the point where I am annoyed. We are talking about a basic cam lock. Not even a good one. This is more a less a lock you would use to lock a cabinet door. In fact it is probably exactly that from one of those vendors, just without markings.

 

If you read the details about the locks themselves, these are "Made in America." That is great, I love stuff made in America. Actually I go out of my way to purchase things made in a America. I am not sure what part of America though it costs $150 to ship 2 door locks to Virginia, but I am assuming they hired an olympic swimmer in Hawaii to cross the ocean with my locks in tow. 

So begins my series on what is inside an ACS lock, what other types of cam locks are out there and suitable, and how to re-wafer these locks by yourself so we as a community do not continue this behavior.


08 May 2020

Registration

The time has finally arrived to start getting the plane ready from a paperwork standpoint. This week I began the registration process. Well, in reality, I started this process about a month and a half ago, but one of the required documents (8050-2 Bill of Sale) on a kit plane requires a signature from Vans aircraft. With COVID-19 in full swing, it took a couple of weeks to get the required ink signature from the VANS CEO for the bill of sale.



The second thing that took a while was my reserved N-Number. I swear I renewed it, but apparently the tail number that I had reserved (and I thought renewed) was no longer in a reserved status. While not necessary to wait for this to come in, I wanted to ensure that I did have the tail number that I wanted (as I had already laser engraved my panel). This actually took 4 weeks to get through the system.

With the reserved N-Number, a completed 8050-1, a signed 8050-2 from Vans, and a notarized 8050-88 Affidavit of Ownership, I sealed up an envelop and sent it to the FAA. Now we wait.

19 March 2020

RV-10 Service Bulletin Synopsis


SERVICE BULLETIN 19-09-09
Date Released: February 26, 2020
Date Effective: February 26, 2020
Subject: Cracking of RV-10 nose gear leg inboard attach lug
Affected Models: RV-10 flying aircraft and/or Finish Kits shipped prior to October 1, 2019 Required Action: Inspect the inboard attachment lugs of the WD-1017 Nose Landing Gear for cracks (see Figure 1). If cracks are discovered, replace the WD-1017 Nose Landing Gear with the WD-1017-1 Nose Landing Gear as described in this document. If no cracks are discovered, annual inspections are required. NOTE: This gear leg is heat treated. Welding as a method of repair is not approved.

SERVICE BULLETIN 18-05-21
Date Released: May 21, 2018
Date Effective: May 21, 2018
Subject: Proper installation of gauge plug in fuel spider.
Affected Models: All fuel injected Lycoming engine installations
Required Action: Check that a plug is properly installed in the fuel spider gauge port. Time of Compliance: Before further flight Supercedes Notice: None Labor Required / SLSA Warranty Allowance: .4 Hours (if applicable) Level of Certification: Not applicable Synopsis: Installations have been found in the field without a proper pipe plug installed in the fuel spider gauge port. Note new engines do not come with this plug installed.

SERVICE BULLETIN 18-03-30 
Date Released: March 30, 2018
Date Effective: March 30, 2018
Subject: Elevator stop inspection
Affected Models: RV-10 aircraft with empennage kits purchased after April 2012 Required Action: Inspect control system for jamming and proper elevator travel. Correct operation if necessary. Time of Compliance: Before further flight Supercedes
Notice: None Labor Required / SLSA Warranty Allowance: 0.3 Hours for the inspection 1.5 Hours if corrections are necessary Level of Certification: None Synopsis: In April 2012 the lower aft portion of the elevator horn was removed. See the trimmed face called out in Figure 1. This portion of the horn typically needs to be removed for use on most RV aircraft. The RV-10 does not require this trim. It has come to our attention that due to production tolerances it would be possible for the horn to jam against the up elevator control stop. This condition would also permit excessive elevator up travel. If either of these problems exist, the aft stop F-1012D Up Elevator Stop should be replaced.

SERVICE BULLETIN 16-03-28
Date Released: May 6, 2016
Date Effective: May 6, 2016
Affected Models: All RV-3, 4, 6/6A, 7/7A, 8/8A, 9/9A, 10, and 14/14A aircraft.
Subject: Cracking of wing aft spar web at the inboard aileron hinge bracket attach rivets. In addition, for RV-10 and RV-14/14A aircraft, there is a potential for cracking of the flange bends of the inboard aileron hinge brackets. Required Action: For RV-3/3A/3B, 4, 7/7A, 8/8A, 9/9A aircraft: Inspect for cracks as described in this document. If cracks are present in the spar web, stop drill the cracks and install aileron attach doublers as described in this service bulletin. For RV-10 and RV-14/14A aircraft: Inspect for cracks as described in this document. If cracks are found in the spar web or the inboard aileron brackets, stop drill the cracks in the spar web (if present), install aileron attach doublers, and replace the aileron hinge brackets with updated brackets. It is unlikely that RV-6/6A wings will be affected. If cracks are present in RV-6/6A aircraft, email Van’s Engineering Dept for instructions, with photos of the cracks, for a specific repair scheme. Contact Van’s Aircraft to obtain the parts needed to complete this modification for your specific model. See the SB kit part numbers at the end of this document.

SERVICE BULLETIN 14-12-22
Date Released: December 22nd, 2014
Date Effective: December 22nd, 2014
Subject: WD-631-PC Nose Stop Flange installation orientation
Affected Models: RV-6A,7A,8A,9A,10 Required Action: Check for proper installation orientation and correct if required. Time of Compliance: Before Further Flight Supersedes Notice: None Level of Certification: None Synopsis: Van’s Aircraft has received reports of damage resulting from the WD-631-PC or WD1031 Nose Stop Flange (stop flange) having been oriented incorrectly during installation. If the stop flange is installed incorrectly, it will allow insufficient rotation of the nose fork during tight taxi turns and can cause the tire to drag sideways. This induces excessive loads on the stop flange, nose gear leg, engine mount and the associated attach hardware. The ‘arms’ of the stop flange should be oriented forward, not aft. See Figure 1 and Figure 2. If the stop flange is oriented with the ‘arms’ aft, it is installed incorrectly.

SERVICE BULLETIN 14-08-29 
Date Released: August 29, 2014
Date Effective: August 29, 2014
Subject: RV-10 engine mount elastomer plate cracking.
Affected Models: All RV-10 aircraft. Required Action: Remove the engine cowling. Remove the WD-1015 Collar Assembly from the WD-1016 Nose Gear Link Assy. Remove the weight from the nose wheel with the use of a ballasted tail stand, etc. Remove the bolt at the lower end of the nose gear link assembly. Remove the nose gear link assembly and J-11968-14 Elastomers. Inspect the WD-1001E Elastomer Plate on the engine mount for cracks (use of a die penetrant inspection kit may be useful in determining the presence of cracks). Based on inspection results, complete the modifications required by this document. Time of Compliance: At or before the next annual condition inspection Synopsis: Cracks have been discovered in the elastomer plate of some RV-10 engine mounts. To date, all incidents of cracking have occurred on aircraft operating on rough fields. Engine mounts shipped after August 13, 2014 are not affected by this service bulletin.

SERVICE BULLETIN 11-9-13
Date: September 13, 2011
Subject: Fuel Tank Slosh Inspection
Affected Models: All Required Action: Inspect for the presence and/or condition of fuel tank sloshing compound. Time of Compliance: Before further flight Synopsis: Van’s has discouraged the use of fuel tank sloshing compounds since the early 1990s. However, some standard RV fuel tanks currently in service contain sloshing compounds applied by the original builder during assembly or after completion. While sloshing compounds have never been used during the initial assembly of QuickBuild tanks, these tanks may have subsequently had sloshing compounds applied by the owner. The safe service life of slosh can vary significantly depending on many factors including initial preparation of the interior of the tank, type of slosh, type of fuel used, etc. Failure of fuel tank slosh can cause in-flight power loss leading to injury or death. Periodic inspections should be performed to assure that slosh, if present, remains in airworthy condition.

SERVICE BULLETIN 10-1-4
Date: January 4, 2010
Subject: RV-10 Door Safety Latch Affected Models: RV-10 Required Action: Install Door Safety Latch Time of Compliance: Before further flight Synopsis: Failure to secure the RV-10 doors properly may result in damage or the doors detaching from the airplane in flight. The safety latch provides additional passive security in the event that a door is not closed properly and the door warning lights malfunction, or are not observed.

SERVICE BULLETIN 08-6-1
Date: June 1, 2008
Subject: F-1010 bulkhead reinforcement
Affected Models: RV-10
Required Action: Inspect F-1010 bulkhead for cracks Install F-1010C bulkhead reinforcing doublers Time of Compliance: Inspection of F-1010 bulkhead within the next 5 flight hours and at 25 hour intervals until the next annual condition inspection and…. Installation of F-1010C doublers at or before the next annual condition inspection. (Inspection requirement may be terminated after F-1010C doublers are installed.) Synopsis: A crack was discovered on the F-1010 bulkhead on Van’s RV-10 demonstrator aircraft at ~500 hours time in service. The F-1010 bulkhead is integral in the attachment of the forward spar of the horizontal and vertical stabilizers. Inspection of the F-1010 bulkhead should be accomplished in order to determine the integrity of the bulkhead. If no crack is found, recurrent inspections should be accomplished until F-1010C doublers are installed during the next annual condition inspection. If a crack is found during inspection, F-1010C doublers should be installed prior to further flight in accordance with the instructions outlined in this bulletin.

SERVICE BULLETIN 07-4-12
Date issued: April 11, 2007
Subject: Electric flap bearing retention Applies: RV-4, RV-6/6A, RV-7/7A, RV-8/8A, RV-9/9A SECURING THE ELECTRIC FLAP ACCTUATOR ROD END Synopsis: If the rod end bearing on the flap motor jackscrew is not secured, the rotation of the jackscrews may cause the bearing to unscrew and separate. This will render the flaps inoperative. Action: A jam nut is provided and, properly installed and tightened, will secure the rod end bearing to the shaft of the jackscrew. As an extra precaution, Van’s Aircraft, Inc. recommends drilling the end of the shaft and securing the connection with safety wire as shown in the accompanying illustration.

SERVICE BULLETIN 06-9-20
Date issued: September 20, 2006
Applies to: All RV’s with manual trim and all RV-10’s. Synopsis: An improved WD-415-1* manual trim cable anchor has been designed and is being made available by Van’s Aircraft at a modest price. The new anchor has closer angular tolerances and is substantially stronger than those previously supplied.

SERVICE BULLETIN 06-2-3
DATE ISSUED February 3, 2006
APPLICATION RV-10 Vertical Stabilizer BACKGROUND AND INTRODUCTION This Bulletin requires changes to the configuration of the RV-10 Vertical Stabilizer shipped prior to February 3, 2006. A crack in the web of the vertical stabilizer rear spar located at the top rudder hinge brackets has been discovered on one of the factory RV-10's. To prevent this, a hinge doubler is now required on the vertical stabilizer rear spar of all RV-10 aircraft. If a crack already exists in your rear spar, please contact Van's Aircraft for repair instructions.

SERVICE BULLETIN 04-2-1
DATE ISSUED: February 25, 2004
APPLICATION: Fuel Tanks
SUBJECT: Protective plastic sheeting found in fuel tank.
BACKGROUND AND INTRODUCTION: Van’s Aircraft, Inc. recently received a report of clear protective plastic sheet having been found inside fuel tanks. In 2000, the color of the applied protective sheeting was changed to a “blue” to minimize the possibility of inadvertently leaving it in place during construction. Prior to this change, the sheeting was clear and more difficult to detect on the skins. It has come to our attention that at least one QuickBuild RV-6 aircraft produced prior to the change has been found with some of the protective sheeting inside the tank. The report indicates that the rear baffles in both left and right tanks were still covered in the protective plastic. This was detected by visual inspection through the fuel filler necks during refueling. Van’s Aircraft feels it prudent to issue this Service Bulletin recommending a one time inspection of fuel tanks on all RV-6/6A QuickBuild Wings and any Standard Kit Wings built prior to our supplying the “blue” version of protective sheeting.

SERVICE BULLETIN 02-12-1
DATE ISSUED: 12-11-02
SUBJECT: Pre-manufactured oil and fuel hose assemblies, part numbers VA-129, VA-133, VA-134, VA-135, VA-138, VA-139 purchased from Van’s Aircraft, Inc. before December 10, 2002. These hoses carry fuel between the gascolator, fuel pump and carburetor/injector body, and oil between the engine and oil cooler. Most have been supplied as part of Van’s Firewall Forward Kit, but some may have been sold individually through Van’s Accessories Catalog. BACKGROUND AND INTRODUCTION: Van’s Aircraft, Inc. inspections have revealed that some hose assemblies may have been improperly manufactured by the vendor supplying the hose to Van’s. Small curls of rubber, cut from the inside of the hose as the ends were installed, may remain attached to the inner wall of the hose. These may obstruct the flow of fluid through the hose and result in potentially unsafe conditions.

SERVICE BULLETIN 96-10-1
Date issued: 10-8-96
Number: 96-10-1 Synopsis: Affects users of Van’s FAB-320 and FAB-360 filtered airboxes. Bolts attaching the top plate of the airbox to the carburetor may come loose and be ingested in the engine, possibly causing severe damage.

01 March 2020

Spark Plug Cables

Something I have been pretty picky about is the routing/mounting of the ignition system. This process started a probably a year ago at this point but started finally coming together in December when I was finally able to securely fasten the coil packs in a position that was both secure and cleared the cowl. 

I have seen a lot of planes (or at least photos of planes) with people bundling the plug wires on their electronic ignitions. While I am not sure how important it still is in modern plug wires to separate cables by at least 1/4" I made the decision early on that I wanted to isolate individual plug wires. 


 






















I did end up ordering a lot of spare hardware from Summit and Amazon that I ended up not using as I was trying different wire layouts. As a base, FlyEFII sends 2x Taylor 8mm Spiro-Pro cable kits along with their System 32. I stuck with those cables as they seemed to be pretty nice quality. I swapped out the coil pack ends from that kit with Taylor Cable 46051 90 degree low profile HEI boots. I ended up doing that for two reasons. First, FlyEFII sends enough hardware to do the 12 plug cables. I always like to have extras prior to starting so I was going to be ordering another set of plug boots anyways. Secondly, I centered the coil pack bracket on the engine mount cross bar. In doing this, the coil packs are a bit close to the baffle. While the standard locking boots still fit in this space, the low profiles make it just a little bit nicer to service the forward facing boots.

In order to secure the cables I used 2 packs of 42700 as well as 2 packs of 42502 cable separators. The 42502 have standoffs included with them.